FC2ブログ

青木ゼミ青木

橿原市の個別指導塾 青木ゼミの塾長ブログ

2009大阪府立大 工学部 数学1

中学生の定期テスト終了!!!!




第1問

 (1) aをa≠1である正の定数とするとき、関数
       f(x)=log(1+logx)
    の定義域と微分係数f’(a)をaを用いて表せ。

 (2) 自然数nに対して、
       
    と定めるとき、極限値
       
    を求めよ。


 (1の(1)については計算の過程を記入しなくてよい。)


テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/02(金) 23:57:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0

2009大阪府立大 工学部 数学2

桃の節句ですね。



第2問

  kを定数とする。-π/2<x<π/2において、2曲線
       
  が2点で交わっているものとする。このとき、次の問いに答えよ。

 (1) 定数kの値の範囲を求めよ。

 (2) 2曲線C1とC2の2つの交点のうち、x座標が正である交点を
    Pとし、交点PにおけるC1、C2の接線の傾きをそれぞれm1
    m2とする。このとき、m2=-m1が成り立つことを示せ。

 (3) k=2のとき、2曲線C1、C2で囲まれた図形をx軸のまわりに
    1回転してできる回転体の体積Vを求めよ。



テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/03(土) 23:54:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0

2009大阪府立大 工学部 数学3



第3問

  点O(0,0,0)を原点とする座標空間の4点A(-1,0,3)、
  B(1,-1,-1)、C(-1,-4,3)、D(4,1,-2)の位置ベクトル
  をそれぞれ とする。また、2つのベクトル
  両方に垂直な単位ベクトルを とし、2つのベクトル の両方に
  垂直な単位ベクトルを とする。さらに、空間内に点Pがあり、点Pの
  位置ベクトル
       αβγ   (α、β、γは定数)
  であるとする。このとき、次の問いに答えよ。

 (1) を成分表示せよ。

 (2) 実数s、t、uに対して、等式
        
    が成り立つことを示せ。

 (3) 空間内に点Qがあり、点Qの位置ベクトル
           (s、tは実数)
    であるとする。実数s、tを動かすとき、 の最小値は|γ|で
    あることを示せ。この最小値を点Pと平面OABの距離という。ただし、
    平面OABとは3点O、A、Bを通る平面である。

 (4) 点Pと平面OABとの距離を内積 を用いて表せ。

 (5) の成分表示を とする。点Pと平面OCDとの距離が
    点Pと平面OABとの距離に等しくなるための必要十分条件をL、m、
    nを用いて表せ。


(3の(1)については計算の過程を記入しなくてよい。)


テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/04(日) 23:57:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0

2009大阪府立大 工学部 数学4



第4問

  1秒ごとに1つの整数が表示される装置がある。整数kが表示された
  とき、次の規則(ⅰ)、(ⅱ)、(ⅲ)にしたがって1秒後の整数が装置に
  表示される。

  規則(ⅰ)
     k>0の場合には、k-1、k-2、k-3のいずれかが表示され、
    それぞれの整数が表示される確率は である。
  規則(ⅱ)
     k<0の場合には、k+1、k+2、k+3のいずれかが表示され、
    それぞれの整数が表示される確率は である。
  規則(ⅲ)
     k=0の場合には、0が表示される。
  
  整数-3が表示されてからn秒後に表示される整数Xnとするとき、
  |Xn|=2となる確率をanとし、|Xn|=1となる確率をbnとする。
  また、整数-3が表示されてからn秒後に初めて0が表示される確率
  をcnとする。ただし、nは2以上の整数である。このとき、次の問いに
  答えよ。

 (1) 確率a2、b2、c2をそれぞれ求めよ。

 (2) すべてのnに対して
        
    を満たす行列Qを求めよ。

 (3) 行列Pを
        
    とする。P-1とP-1QPを求めよ。

 (4) Qnをnを用いて表せ。

 (5) 確率an、bnおよびcnをnを用いて表せ。




(4の(1)、(2)、(3)については途中の過程を記入しなくてよい。)

テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/05(月) 23:57:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0

2009大阪府立大 工学部 数学5(1)~(3)



第5問

  a>1、0<θ<1とする。このとき、次の問いに答えよ。

 (1) 積分
       
    を計算し、Ia(θ)をaとθを用いて表せ。

 (2) 極限
       
    が正の値に収束するためのaの条件を求めよ。

 (3) (2)の条件を満たすaに対して、極限
       
    をaを用いて表せ。

 (4) (2)の条件を満たすaに対して、極限
       
    をaを用いて表せ。なお、x≧0であるすべてのxに対して、
       
    が成り立つことを用いてもよい。


テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/06(火) 23:54:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0

2009大阪府立大 工学部 数学5(4)



第5問

  a>1、0<θ<1とする。このとき、次の問いに答えよ。

 (1) 積分
       
    を計算し、Ia(θ)をaとθを用いて表せ。

 (2) 極限
       
    が正の値に収束するためのaの条件を求めよ。

 (3) (2)の条件を満たすaに対して、極限
       
    をaを用いて表せ。

 (4) (2)の条件を満たすaに対して、極限
       
    をaを用いて表せ。なお、x≧0であるすべてのxに対して、
       
    が成り立つことを用いてもよい。


テーマ:数学 - ジャンル:学問・文化・芸術

  1. 2012/03/06(火) 23:57:00|
  2. 大学入試(数学) .関西の公立大学 .大阪府立大 中期 2009(工)
  3. | トラックバック:0
  4. | コメント:0